Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The concentrations of free magnesium, [Mg(2+)](free), [H(+)], and [ATP] are important in the dehydration of red blood cells from patients with sickle cell anemia, but they are not easily measured. Consequently, we have developed a rapid, noninvasive NMR spectroscopic method using the phosphorus chemical shifts of ATP and 2,3-diphosphoglycerate (DPG) to determine [Mg(2+)](free) and pH(i) simultaneously in fully oxygenated whole blood. The method employs theoretical equations expressing the observed chemical shift as a function of pH, K(+), and [Mg(2+)](free), over a pH range of 5.75-8.5 and [Mg(2+)](free) range 0-5 mm. The equations were adjusted to allow for the binding of hemoglobin to ATP and DPG, which required knowledge of the intracellular concentrations of ATP, DPG, K(+), and hemoglobin. Normal oxygenated whole blood (n = 33) had a pH(i) of 7.20 +/- 0.02, a [Mg(2+)](free) of 0.41 +/- 0.03 mm, and [DPG] of 7.69 +/- 0.47 mm. Under the same conditions, whole sickle blood (n = 9) had normal [ATP] but significantly lower pH(i) (7.10 +/- 0.03) and [Mg(2+)](free) (0.32 +/- 0.05 mm) than normal red cells, whereas [DPG] (10.8 +/- 1.2 mm) was significantly higher. Because total magnesium was normal in sickle cells, the lower [Mg(2+)](free) could be attributed to increased [DPG] and therefore greater magnesium binding capacity of sickle cells.

Original publication




Journal article


J Biol Chem

Publication Date





49911 - 49920


2,3-Diphosphoglycerate, Adenosine Triphosphate, Anemia, Sickle Cell, Erythrocytes, Hemoglobins, Humans, Hydrogen-Ion Concentration, Kinetics, Magnesium, Magnetic Resonance Spectroscopy, Models, Chemical, Temperature