Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Phytoplankton account for nearly half of global primary productivity and strongly affect the global carbon cycle, yet little is known about the forces that drive the evolution of these keystone microscopic organisms. Here we combine morphometric data from the fossil record of the ubiquitous coccolithophore genus Gephyrocapsa with genomic analyses of extant species to assess the genetic processes underlying Pleistocene palaeontological patterns. We demonstrate that all modern diversity in Gephyrocapsa (including Emiliania huxleyi) originated in a rapid species radiation during the last 0.6 Ma, coincident with the latest of the three pulses of Gephyrocapsa diversification and extinction documented in the fossil record. Our evolutionary genetic analyses indicate that new species in this genus have formed in sympatry or parapatry, with occasional hybridisation between species. This sheds light on the mode of speciation during evolutionary radiation of marine phytoplankton and provides a model of how new plankton species form.

Original publication




Journal article


Nat Commun

Publication Date