Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Ion channels and G protein-coupled receptors (GPCRs) are regulated by lipids in their membrane environment. Structural studies combined with biophysical and molecular simulation investigations reveal interaction sites for specific lipids on membrane protein structures. For K channels, PIP2 plays a key role in regulating Kv and Kir channels. Likewise, several recent cryo-EM structures of TRP channels have revealed bound lipids, including PIP2 and cholesterol. Among the pentameric ligand-gated ion channel family, structural and biophysical studies suggest the M4 TM helix may act as a lipid sensor, e.g., forming part of the binding sites for neurosteroids on the GABAA receptor. Structures of GPCRs have revealed multiple cholesterol sites, which may modulate both receptor dynamics and receptor oligomerization. PIP2 also interacts with GPCRs and may modulate their interactions with G proteins. Overall, it is evident that multiple lipid-binding sites exist on channels and receptors that modulate their function allosterically and are potential druggable sites. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 60 is January 6, 2020. Please see for revised estimates.

Original publication




Journal article


Annu Rev Pharmacol Toxicol

Publication Date