Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The population densities of leopards vary widely across their global range, influenced by prey availability, intraguild competition and human persecution. In Asia, particularly the Middle East and the Caucasus, they generally occur at the lower extreme of densities recorded for the species. Reliable estimates of population density are important for understanding their ecology and planning their conservation. We used a photographic spatial capture-recapture (SCR) methodology incorporating animal movement to estimate density for the endangered Persian leopard Panthera pardus saxicolor in three montane national parks, northeastern Iran. We combined encounter history data arising from images of bilaterally asymmetrical left- and right-sided pelage patterns using a Bayesian spatial partial identity model accommodating multiple "non-invasive" marks. We also investigated the effect of camera trap placement on detection probability. Surprisingly, considering the subspecies' reported low abundance and density based on previous studies, we found relatively high population densities in the three national parks, varying between 3.10 ± SD 1.84 and 8.86 ± SD 3.60 individuals/100 km2. The number of leopards detected in Tandoureh National Park (30 individuals) was larger than estimated during comparable surveys at any other site in Iran, or indeed globally. Capture and recapture probabilities were higher for camera traps placed near water resources compared with those placed on trails. Our results show the benefits of protecting even relatively small mountainous areas, which accommodated a high density of leopards and provided refugia in a landscape with substantial human activity.

Original publication

DOI

10.1038/s41598-019-50605-2

Type

Journal article

Journal

Sci Rep

Publication Date

11/10/2019

Volume

9