Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The OX2 membrane glycoprotein (CD200) is expressed on a broad range of tissues including lymphoid cells, neurons, and endothelium. We report the characterization of an OX2 receptor (OX2R) that is a novel protein restricted to cells of the myeloid lineage. OX2 and its receptor are both cell surface glycoproteins containing two immunoglobulin-like domains and interact with a dissociation constant of 2.5 microM and koff 0.8 s(-1), typical of many leukocyte protein membrane interactions. Pervanandate treatment of macrophages showed that OX2R could be phosphorylated on tyrosine residues. Blockade of the OX2-OX2R interaction with an OX2R mAb exacerbated the disease model experimental allergic encephalomyelitis. These data, together with data from an OX2-deficient mouse (R. M. Hoek et al., submitted), suggest that myeloid function can be controlled in a tissue-specific manner by the OX2-OX2R interaction.


Journal article



Publication Date





233 - 242


Amino Acid Sequence, Animals, Cloning, Molecular, Immunoglobulins, Leukopoiesis, Lymphocytes, Macrophages, Mice, Molecular Sequence Data, Neurons, Rats, Receptors, Immunologic, Sequence Alignment, Signal Transduction