Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

There is a pressing need to identify markers of cognitive and neural decline in healthy late-midlife participants. We explored the relationship between cross-sectional structural brain-imaging derived phenotypes (IDPs) and cognitive ability, demographic, health and lifestyle factors (non-IDPs). Participants were recruited from the 1953 Danish Male Birth Cohort (N=193). Applying an extreme group design, members were selected in 2 groups based on cognitive change between IQ at age ~20y (IQ-20) and age ~57y (IQ-57). Subjects showing the highest (n=95) and lowest (n=98) change were selected (at age ~57) for assessments on multiple IDPs and non-IDPs. We investigated the relationship between 453 IDPs and 70 non-IDPs through pairwise correlation and multivariate canonical correlation analysis (CCA) models. Significant pairwise associations included positive associations between IQ-20 and gray-matter volume of the temporal pole. CCA identified a richer pattern - a single "positive-negative" mode of population co-variation coupling individual cross-subject variations in IDPs to an extensive range of non-IDP measures (r = 0.75, Pcorrected < 0.01). Specifically, this mode linked higher cognitive performance, positive early-life social factors, and mental health to a larger brain volume of several brain structures, overall volume, and microstructural properties of some white matter tracts. Interestingly, both statistical models identified IQ-20 and gray-matter volume of the temporal pole as important contributors to the inter-individual variation observed. The converging patterns provide novel insight into the importance of early adulthood intelligence as a significant marker of late-midlife neural decline and motivates additional study.

Original publication

DOI

10.18632/aging.102151

Type

Journal article

Journal

Aging (Albany NY)

Publication Date

26/08/2019

Volume

11

Pages

5943 - 5974

Keywords

aging, brain structure, magnetic resonance imaging, neurocognitive function, risk factors