Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: To assess the impact of the different post-processing options in the calibration of arterial spin labeling (ASL) data on perfusion quantification and its reproducibility. THEORY AND METHODS: Absolute quantification of perfusion measurements is one of the promises of ASL techniques. However, it is highly dependent on a calibration procedure that involves a complex processing pipeline for which no standardized procedure has been fully established. In this work, we systematically compare the main ASL calibration methods as well as various post-processing calibration options, using 2 data sets acquired with the most common sequences, pulsed ASL and pseudo-continuous ASL. RESULTS: Significant and sometimes large discrepancies in ASL perfusion quantification were obtained when using different post-processing calibration options. Nevertheless, when using a set of theoretically based and carefully chosen options, only small differences were observed for both reference tissue and voxelwise methods. The voxelwise and white matter reference tissue methods were less sensitive to post-processing options than the cerebrospinal fluid reference tissue method. However, white matter reference tissue calibration also produced poorer reproducibility results. Moreover, it may also not be an appropriate reference in case of white matter pathology. CONCLUSION: Poor post-processing calibration options can lead to large errors in perfusion quantification, and a complete description of the calibration procedure should therefore be reported in ASL studies. Overall, our results further support the voxelwise calibration method proposed by the ASL white paper, particularly given the advantage of being relatively simple to implement and intrinsically correcting for the coil sensitivity profile.

Original publication




Journal article


Magn Reson Med

Publication Date





1222 - 1234


ASL, MRI, calibration, cerebral blood flow, kinetic modeling