Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In a mouse mutagenesis screen, we isolated a mutant, Myshkin (Myk), with autosomal dominant complex partial and secondarily generalized seizures, a greatly reduced threshold for hippocampal seizures in vitro, posttetanic hyperexcitability of the CA3-CA1 hippocampal pathway, and neuronal degeneration in the hippocampus. Positional cloning and functional analysis revealed that Myk/+ mice carry a mutation (I810N) which renders the normally expressed Na(+),K(+)-ATPase alpha3 isoform inactive. Total Na(+),K(+)-ATPase activity was reduced by 42% in Myk/+ brain. The epilepsy in Myk/+ mice and in vitro hyperexcitability could be prevented by delivery of additional copies of wild-type Na(+),K(+)-ATPase alpha3 by transgenesis, which also rescued Na(+),K(+)-ATPase activity. Our findings reveal the functional significance of the Na(+),K(+)-ATPase alpha3 isoform in the control of epileptiform activity and seizure behavior.

Original publication

DOI

10.1073/pnas.0904817106

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

18/08/2009

Volume

106

Pages

14085 - 14090

Keywords

Animals, Base Sequence, COS Cells, Central Nervous System, Chlorocebus aethiops, Hippocampus, Male, Mice, Mice, Inbred C57BL, Molecular Sequence Data, Mutation, Seizures, Sequence Homology, Nucleic Acid, Sodium-Potassium-Exchanging ATPase