Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The ability to visualize behaviourally evoked neural activity patterns across the rodent brain is essential for understanding the distributed brain networks mediating particular behaviours. However, current imaging methods are limited in their spatial resolution and/or ability to obtain brain-wide coverage of functional activity. Here, we describe a new automated method for obtaining cellular-level, whole-brain maps of behaviourally induced neural activity in the mouse. This method combines the use of transgenic immediate-early gene reporter mice to visualize neural activity; serial two-photon tomography to image the entire brain at cellular resolution; advanced image processing algorithms to count the activated neurons and align the datasets to the Allen Mouse Brain Atlas; and statistical analysis to identify the network of activated brain regions evoked by behaviour. We demonstrate the use of this approach to determine the whole-brain networks activated during the retrieval of fear memories. Consistent with previous studies, we identified a large network of amygdalar, hippocampal, and neocortical brain regions implicated in fear memory retrieval. Our proposed methods can thus be used to map cellular networks involved in the expression of normal behaviours as well as to investigate in depth circuit dysfunction in mouse models of neurobiological disease.

Original publication

DOI

10.1007/s00429-014-0774-0

Type

Journal article

Journal

Brain Struct Funct

Publication Date

07/2015

Volume

220

Pages

2043 - 2057

Keywords

AIDS-Related Complex, Animals, Benzofurans, Brain, Brain Mapping, Conditioning, Psychological, Fear, Luminescent Proteins, Mice, Mice, Transgenic, Neurons, Quinolines, Statistics, Nonparametric