Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The contribution of structural connectivity to functional brain states remains poorly understood. We present a mathematical and computational study suited to assess the structure-function issue, treating a system of Jansen-Rit neural mass nodes with heterogeneous structural connections estimated from diffusion MRI data provided by the Human Connectome Project. Via direct simulations we determine the similarity of functional (inferred from correlated activity between nodes) and structural connectivity matrices under variation of the parameters controlling single-node dynamics, highlighting a nontrivial structure-function relationship in regimes that support limit cycle oscillations. To determine their relationship, we firstly calculate network instabilities giving rise to oscillations, and the so-called 'false bifurcations' (for which a significant qualitative change in the orbit is observed, without a change of stability) occurring beyond this onset. We highlight that functional connectivity (FC) is inherited robustly from structure when node dynamics are poised near a Hopf bifurcation, whilst near false bifurcations, and structure only weakly influences FC. Secondly, we develop a weakly coupled oscillator description to analyse oscillatory phase-locked states and, furthermore, show how the modular structure of FC matrices can be predicted via linear stability analysis. This study thereby emphasises the substantial role that local dynamics can have in shaping large-scale functional brain states.

Original publication

DOI

10.1162/netn_a_00130

Type

Journal article

Journal

Netw Neurosci

Publication Date

2020

Volume

4

Pages

467 - 483

Keywords

Coupled oscillator theory, False bifurcation, Functional connectivity, Hopf bifurcation, Neural mass model, Structural connectivity