Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Synchronized oscillations are a ubiquitous feature of neuronal circuits and can modulate online information transfer and plasticity between brain areas. The disruption of these oscillatory processes is associated with the symptoms of several brain disorders. While conventional therapeutic high-frequency deep brain stimulation can perturb neuronal oscillations, manipulating the timing of oscillatory activity between areas more precisely could provide a more efficient and effective method of modulating these activities. Here we describe a prototype circuit for synchronizing the clocks between an active implantable and an external sensing and stimulation system that could be used to achieve this goal. Our specific focus is on synchronizing the systems for paired-associative stimulation. The ability to repetitively drive two brain regions with a fixed latency has specific implications for neural plasticity. Furthermore, the general concept can be applied for many potential applications involving distributed neural interfaces.

Original publication

DOI

10.1109/EMBC.2019.8857895

Type

Conference paper

Publication Date

07/2019

Volume

2019

Pages

3831 - 3834

Keywords

Brain, Deep Brain Stimulation, Humans, Implantable Neurostimulators, Neuronal Plasticity, Neurons, Prosthesis Design