Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2019 IEEE. Increased oscillatory activities in the beta frequency band (13-30 Hz) in the subthalamic nucleus (STN), and in particular prolonged episodes of increased synchrony in this frequency band, have been associated with motor symptoms such as bradykinesia and rigidity in Parkinson's disease (PD). Numerous studies have investigated sensorimotor cortical beta oscillations either as a control signal for Brain Computer Interfaces (BCI) or as target signal for neurofeedback training (NFB). However, it still remains unknown whether patients with PD can gain control of the pathological oscillations recorded from a subcortical site - the STN - with neurofeedback training. We tried to address this question in the current study. Specifically, we designed a simple basketball game, in which the position of a basketball changes based on the occurrence of events of temporally increased beta power quantified in real-time. Participants practised in the game to control the position of the basketball, which requires modulation of the beta oscillations recorded from STN local field potentials (LFPs). Our results suggest that it is possible to use neurofeedback training for PD patients to downregulate pathological beta oscillations in STN LFPs, and that this can lead to a reduction of beta oscillations in the cortical-STN motor network.

Original publication




Conference paper

Publication Date





81 - 84