Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Histone modifications occur in precise patterns and are proposed to signal the recruitment of effector molecules that profoundly impact chromatin structure, gene regulation, and cell cycle events. The linked modifications serine 10 phosphorylation and lysine 14 acetylation on histone H3 (H3S10phK14ac), modifications conserved from Saccharomyces cerevisiae to humans, are crucial for transcriptional activation of many genes. However, the mechanism of H3S10phK14ac involvement in these processes is unclear. To shed light on the role of this dual modification, we utilized H3 peptide affinity assays to identify H3S10phK14ac-interacting proteins. We found that the interaction of the known phospho-binding 14-3-3 proteins with H3 is dependent on the presence of both of these marks, not just phosphorylation alone. This is true of mammalian 14-3-3 proteins as well as the yeast homologues Bmh1 and Bmh2. The importance of acetylation in this interaction is also seen in vivo, where K14 acetylation is required for optimal Bmh1 recruitment to the GAL1 promoter during transcriptional activation.

Original publication




Journal article


Mol Cell Biol

Publication Date





2840 - 2849


14-3-3 Proteins, Acetylation, Calorimetry, HeLa Cells, Histones, Humans, Phosphorylation, Phosphoserine, Promoter Regions, Genetic, Protein Binding, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins