Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Ion channels form pores of nanoscopic dimensions in biological membranes and play a key role in the physiology of cells. The majority of ion channels are gated, i.e. they contain a molecular switch that allows a transition between a closed (functionally 'off') and open (functionally 'on') state. Comparison of crystal structures of potassium channels suggest that the gating mechanism of voltage-gated potassium (Kv) channels involves a key role for the pore-lining S6 helix. There is a conserved PVP sequence motif in the S6 helix. Molecular dynamics simulations are used here to explore the conformational dynamics of the S6 helix hinge in models of fragments of a Kv channel, namely an S5-P-S6 monomer and an (S5-P-S6)4 tetramer. The latter is a model of the complete pore-forming domain of a Kv channel. All models were simulated embedded in an octane slab (a simple membrane mimetic). The results of these simulations indicate that the PVP motif may form a molecular hinge, even when the S6 helix forms part of a more complex model. The conformational dynamics of S6 are modulated by the remainder of protein, but it remains flexible. These simulation results are compatible with a channel gating model in which S6 bends in the vicinity of the PVP motif in addition to the region around the conserved glycine (G466) that is N-terminal to the PVP motif. This model is supported by comparison of the Kv S6 models with the S6 helix of the bacterial KvAP channel crystal structure. Thus, K channel gating may depend on a complex nanoswitch with three rigid helical sections linked by two molecular hinges.

Original publication

DOI

10.1049/ip-nbt:20040101

Type

Journal article

Journal

IEE Proc Nanobiotechnol

Publication Date

02/2004

Volume

151

Pages

17 - 27