Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The class of biological macromolecules known as ion channels are becoming of great interest to physical scientists and engineers, as well as biophysicists and pharmacologists. The long term stability and wide range of properties displayed by this large group of proteins makes them one of the most popular contenders to bridge the gap between solid state electronics and biological systems. However, many of the most basic mechanisms by which these molecules conduct ions are still poorly understood. We present a comparison between the behaviour of continuum and discrete particle methods in simulations of sub-nanometre diameter model pores. Using Drift Diffusion and Self Consistent Brownian dynamics simulations we demonstrate that, without serious modification, continuum methods are insufficient to model even simple pores of these dimensions. © Springer Science+Business Media LLC 2007.

Original publication




Journal article


Journal of Computational Electronics

Publication Date





367 - 371