Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Water plays a key role in biological membrane transport. In ion channels and water-conducting pores (aquaporins), one-dimensional confinement in conjunction with strong surface effects changes the physical behavior of water. In molecular dynamics simulations of water in short (0.8 nm) hydrophobic pores the water density in the pore fluctuates on a nanosecond time scale. In long simulations (460 ns in total) at pore radii ranging from 0.35 to 1.0 nm we quantify the kinetics of oscillations between a liquid-filled and a vapor-filled pore. This behavior can be explained as capillary evaporation alternating with capillary condensation, driven by pressure fluctuations in the water outside the pore. The free-energy difference between the two states depends linearly on the radius. The free-energy landscape shows how a metastable liquid state gradually develops with increasing radius. For radii > approximately 0.55 nm it becomes the globally stable state and the vapor state vanishes. One-dimensional confinement affects the dynamic behavior of the water molecules and increases the self diffusion by a factor of 2-3 compared with bulk water. Permeabilities for the narrow pores are of the same order of magnitude as for biological water pores. Water flow is not continuous but occurs in bursts. Our results suggest that simulations aimed at collective phenomena such as hydrophobic effects may require simulation times >50 ns. For water in confined geometries, it is not possible to extrapolate from bulk or short time behavior to longer time scales.

Original publication

DOI

10.1073/pnas.1136844100

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

10/06/2003

Volume

100

Pages

7063 - 7068

Keywords

Aquaporins, Biological Transport, Active, Biophysical Phenomena, Biophysics, Cell Membrane, Gramicidin, Hydrophobic and Hydrophilic Interactions, In Vitro Techniques, Kinetics, Models, Biological, Nanotechnology, Oscillometry, Receptors, Nicotinic, Thermodynamics, Water