Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Radiation damage restricts the useful lifetime for macromolecular crystals in the X-ray beam, even at cryotemperatures. With the development of structural genomics pipelines, it will be essential to incorporate projected crystal lifetime information into the automated data collection software routines. As a first step towards this goal, a computer program, RADDOSE, is presented which is designed for use by crystallographers in optimizing the amount of data that can be obtained from a particular cryo-cooled crystal at synchrotron beamlines. The program uses the composition of the crystal and buffer constituents, as well as the beam energy, flux and dimensions, to compute the absorption coefficients and hence the theoretical time taken to reach an absorbed dose of 2 × 10 7 Gy, the so-called 'Henderson limit'. At this dose, the intensity of the diffraction pattern is predicted to be halved. A 'diffraction-dose efficiency' quantity is introduced, for the convenient comparison of absorbed dose per diffracted photon for different crystals. Four example cases are considered, and the implications for anomalous data collection are discussed in the light of the results from RADDOSE.

Original publication

DOI

10.1107/S0021889804010660

Type

Journal article

Journal

Journal of Applied Crystallography

Publication Date

01/08/2004

Volume

37

Pages

513 - 522