Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The heme chaperone CcmE is a novel protein that binds heme covalently via a histidine residue as part of its essential function in the process of cytochrome c biogenesis in many bacteria as well as plant mitochondria. In the continued absence of a structure of the holoform of CcmE, identification of the heme ligands is an important step in understanding the molecular function of this protein and the role of covalent heme binding to CcmE during the maturation of c-type cytochromes. In this work, we present spectroscopic data that provide insight into the ligation of the heme iron in the soluble domain of CcmE from Escherichia coli. Resonance Raman spectra demonstrated that one of the heme axial ligands is a histidine residue and that the other is likely to be Tyr134. In addition, the properties of the heme resonances of the holo-protein as compared with those of a form of CcmE with non-covalently bound heme provide evidence for the modification of one of the heme vinyl side chains by the protein, most likely the 2-vinyl group.

Original publication

DOI

10.1074/jbc.M408963200

Type

Journal article

Journal

J Biol Chem

Publication Date

10/12/2004

Volume

279

Pages

51981 - 51988

Keywords

Bacterial Outer Membrane Proteins, Base Sequence, Binding Sites, Cytochromes c, DNA, Bacterial, Escherichia coli, Escherichia coli Proteins, Heme, Hemeproteins, Histidine, Ligands, Protein Binding, Spectrum Analysis, Raman, Tyrosine