Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A protein interaction network (PIN) is a set of proteins that modulate one another's activities by regulated synthesis and degradation, by reversible binding to form complexes, and by catalytic reactions (e.g., phosphorylation and dephosphorylation). Most PINs are so complex that their dynamical characteristics cannot be deduced accurately by intuitive reasoning alone. To predict the properties of such networks, many research groups have turned to mathematical models (differential equations based on standard biochemical rate laws, e.g., mass-action, Michaelis-Menten, Hill). When using Michaelis-Menten rate expressions to model PINs, care must be exercised to avoid making inconsistent assumptions about enzyme-substrate complexes. We show that an appealingly simple model of a PIN that functions as a bistable switch is compromised by neglecting enzyme-substrate intermediates. When the neglected intermediates are put back into the model, bistability of the switch is lost. The theory of chemical reaction networks predicts that bistability can be recovered by adding specific reaction channels to the molecular mechanism. We explore two very different routes to recover bistability. In both cases, we show how to convert the original 'phenomenological' model into a consistent set of mass-action rate laws that retains the desired bistability properties. Once an equivalent model is formulated in terms of elementary chemical reactions, it can be simulated accurately either by deterministic differential equations or by Gillespie's stochastic simulation algorithm.

Original publication

DOI

10.1016/j.jtbi.2007.09.001

Type

Journal article

Journal

J Theor Biol

Publication Date

07/01/2008

Volume

250

Pages

209 - 218

Keywords

Algorithms, Cell Cycle, Cell Cycle Proteins, Cellular Senescence, Models, Chemical, Protein Binding, Protein Interaction Mapping, Proteins, Saccharomyces cerevisiae, Stochastic Processes