Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A number of membrane-active enzymes act in a complex environment formed by the interface between a lipid bilayer and bulk water. Although x-ray diffraction studies yield structures of isolated enzyme molecules, a detailed characterization of their interactions with the interface requires a measure of how deeply such a membrane-associated protein penetrates into a lipid bilayer. Here, we apply coarse-grained (CG) molecular dynamics (MD) simulations to probe the interaction of porcine pancreatic phospholipase A2 (PLA2) with a lipid bilayer containing palmitoyl-oleoyl-phosphatidyl choline and palmitoyl-oleoyl-phosphatidyl glycerol molecules. We also used a configuration from a CG-MD trajectory to initiate two atomistic (AT) MD simulations. The results of the CG and AT simulations are evaluated by comparison with available experimental data. The membrane-binding surface of PLA2 consists of a patch of hydrophobic residues surrounded by polar and basic residues. We show this proposed footprint interacts preferentially with the anionic headgroups of the palmitoyl-oleoyl-phosphatidyl glycerol molecules. Thus, both electrostatic and hydrophobic interactions determine the location of PLA2 relative to the bilayer. From a general perspective, this study demonstrates that CG-MD simulations may be used to reveal the orientation and location of a membrane-surface-bound protein relative to a lipid bilayer, which may subsequently be refined by AT-MD simulations to probe more detailed interactions.

Original publication




Journal article


Biophys J

Publication Date





1649 - 1657


Computer Simulation, Lipid Bilayers, Membrane Fluidity, Membrane Proteins, Models, Chemical, Models, Molecular, Phospholipases A2, Phospholipids, Protein Binding