Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

It is well established that the primary motor cortex (M1) plays a significant role in motor learning in healthy humans. It is unclear, however, whether mechanisms of motor learning include M1 oscillatory activity. In this study, we aimed to test whether M1 oscillations, entrained by transcranial Alternating Current Stimulation (tACS) at motor resonant frequencies, have any effect on motor acquisition and retention during a rapid learning task, as assessed by kinematic analysis. We also tested whether the stimulation influenced the corticospinal excitability changes after motor learning. Sixteen healthy subjects were enrolled in the study. Participants performed the motor learning task in three experimental conditions: sham-tACS (baseline), β-tACS and γ-tACS. Corticospinal excitability was assessed with single-pulse TMS before the motor learning task and 5, 15, and 30 min thereafter. Motor retention was tested 30 min after the motor learning task. During training, acceleration of the practiced movement improved in the baseline condition and the enhanced performance was retained when tested 30 min later. The β-tACS delivered during training inhibited the acquisition of the motor learning task. Conversely, the γ-tACS slightly improved the acceleration of the practiced movement during training but it reduced motor retention. At the end of training, corticospinal excitability had similarly increased in the three sessions. The results are compatible with the hypothesis that entrainment of the two major motor resonant rhythms through tACS over M1 has different effects on motor learning in healthy humans. The effects, however, were unrelated to corticospinal excitability changes.

Original publication




Journal article



Publication Date



TMS, beta, gamma, motor cortex, motor learning, tACS