Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The dispersion of carbon nanotubes (CNTs) in aqueous media is of potential importance in a number of biomedical applications. CNT solubilization has been achieved via the non-covalent adsorption of lipids and detergent onto the tube surface. We use coarse-grained molecular dynamics to study the self-assembly of CNTs with various amphiphiles, namely a bilayer-forming lipid, dipalmitoylphosphatidylcholine (DPPC), and two species of detergent, dihexanoylphosphatidylcholine (DHPC) and lysophosphatidylcholine (LPC). We find that for a low amphiphile/CNT ratio, DPPC, DHPC and LPC all wrap around the CNT. Upon increasing the number of amphiphiles, a transition in adsorption is observed: DPPC encapsulates the CNT within a cylindrical micelle, whilst both DHPC and LPC adsorb onto CNTs in hemimicelles. This study highlights differences in adsorption mechanism of bilayer-forming lipids and detergents on CNTs which may in the future be exploitable to enable enhancement of CNT solubilization whilst minimizing perturbation of cell membrane integrity.

Original publication

DOI

10.1088/0957-4484/20/4/045101

Type

Journal article

Journal

Nanotechnology

Publication Date

28/01/2009

Volume

20

Keywords

1,2-Dipalmitoylphosphatidylcholine, Adsorption, Computer Simulation, Detergents, Lysophosphatidylcholines, Models, Chemical, Nanotubes, Carbon, Phosphatidylcholines