Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Bacteriorhodopsin (BR) is a membrane protein which pumps protons through the plasma membrane. Transmembrane BR helical segments are subjected to simulation studies in order to investigate the effect of bilayer environment in various simulation conditions. A bilayer potential is introduced to the system to mimic the lipid membrane. The structures from the simulations are compared with the experimentally determined structures in terms of geometrical properties. Electrostatic contribution to the helix packing is also investigated. The simulation results show that the packing geometry of the transmembrane helices is highly affected by the bilayer potential. The results obtained from the simulations may be used for further simulation studies and analysis in investigating transmembrane helix packing.


Journal article


Eur Biophys J

Publication Date





674 - 682


Amino Acid Sequence, Bacteriorhodopsins, Computer Simulation, Dimerization, Kinetics, Lipid Bilayers, Membrane Potentials, Models, Molecular, Molecular Sequence Data, Peptide Fragments, Time Factors