Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Bacteriorhodopsin (BR) is a membrane protein which pumps protons through the plasma membrane. Seven transmembrane BR helical segments are subjected to simulation studies in order to investigate the packing process of transmembrane helices. A Monte Carlo simulated annealing protocol is employed to optimize the helix bundle system. Helix packing is optimized according to a semi-empirical potential mainly composed of six components: a bilayer potential, a crossing angle potential, a helix dipole potential, a helix-helix distance potential, a helix orientation potential and a helix-helix distance restraint potential (a loop potential). Necessary parameters are derived from theoretical studies and statistical analysis of experimentally determined protein structures. The structures from the simulations are compared with the experimentally determined structures in terms of geometry. The structures generated show similar shapes to the experimentally suggested structure even without the helix-helix distance restraint potential. However, the relative locations of individual helices were reproduced only when the helix-helix distance restraint potential was used with restraint conditions. Our results suggest that transmembrane helix bundles resembling those observed experimentally may be generated by simulations using simple potentials.

Type

Journal article

Journal

Eur Biophys J

Publication Date

2000

Volume

28

Pages

663 - 673

Keywords

Amino Acid Sequence, Bacteriorhodopsins, Computer Simulation, Models, Molecular, Molecular Sequence Data, Monte Carlo Method, Peptide Fragments, Protein Structure, Secondary