Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Metaphase of mitosis is brought about in all eukaryotes by activation of cylin-dependent kinase (Cdk1), whereas exit from mitosis requires down-regulation of Cdk1 activity and dephosphorylation of its target proteins. In budding yeast, the completion of mitotic exit requires the release and activation of the Cdc14 protein-phosphatase, which is kept inactive in the nucleolus during most of the cell cycle. Activation of Cdc14 is controlled by two regulatory networks called FEAR (Cdc fourteen early anaphase release) and MEN (mitotic exit network). We have shown recently that the anaphase promoting protease (separase) is essential for Cdc14 activation, thereby it makes mitotic exit dependent on execution of anaphase. Based on this finding, we have proposed a new model for mitotic exit in budding yeast. Here we explain the essence of the model by phaseplane analysis, which reveals two underlying bistable switches in the regulatory network. One bistable switch is caused by mutual activation (positive feedback) between Cdc14 activating MEN and Cdc14 itself. The mitosis-inducing Cdk1 activity inhibits the activation of this positive feedback loop and thereby controlling this switch. The other irreversible switch is generated by a double-negative feedback (mutual antagonism) between mitosis inducing Cdk1 activity and its degradation machinery (APC(Cdh1)). The Cdc14 phosphatase helps turning this switch in favor of APC(Cdh1) side. Both of these bistable switches have characteristic thresholds, the first one for Cdk1 activity, while the second for Cdc14 activity. We show that the physiological behaviors of certain cell cycle mutants are suggestive for those Cdk1 and Cdc14 thresholds. The two bistable switches turn on in a well-defined order. In this paper, we explain how the activation of Cdc20 (which causes the activation of separase and a decrease of Cdk1 kinase activity) provides an initial trigger for the activation of the MEN-Cdc14 positive feedback loops, which in turn, flips the second irreversible Cdk-APC(Cdh1) switch on the APC(Cdh1) side).

Original publication

DOI

10.1016/j.jtbi.2007.06.014

Type

Journal article

Journal

J Theor Biol

Publication Date

07/10/2007

Volume

248

Pages

560 - 573

Keywords

Anaphase, Anaphase-Promoting Complex-Cyclosome, CDC2 Protein Kinase, Cdc20 Proteins, Cell Cycle Proteins, Cyclin B, Cyclin-Dependent Kinases, Down-Regulation, Endopeptidases, Enzyme Activation, Fungal Proteins, Mathematics, Mitosis, Models, Biological, Phosphorylation, Protein Tyrosine Phosphatases, Saccharomyces cerevisiae Proteins, Saccharomycetales, Separase, Ubiquitin-Protein Ligase Complexes