Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Our goal was to assess the relationship between membrane protein quality, output from protein quality checkers and output from molecular dynamics (MD) simulations. Membrane transport proteins are essential for a wide range of cellular processes. Structural features of integral membrane proteins are still under-explored due to experimental limitations in structure determination. Computational techniques can be used to exploit biochemical and medium resolution structural data, as well as sequence homology to known structures, and enable us to explore the structure-function relationships in several transmembrane proteins. The quality of the models produced is vitally important to obtain reliable predictions. An examination of the relationship between model stability in molecular dynamics (MD) simulations derived from RMSD (root mean squared deviation) and structure quality assessment from various protein quality checkers was undertaken. The results were compared to membrane protein structures, solved at various resolution, by either X-ray or electron diffraction techniques. The checking programs could predict the potential success of MD in making functional conclusions. MD stability was shown to be a good indicator for the quality of structures. The quality was also shown to be dependent on the resolution at which the structures were determined.

Original publication

DOI

10.1016/j.jmgm.2005.05.006

Type

Conference paper

Publication Date

10/2005

Volume

24

Pages

157 - 165

Keywords

Computer Simulation, Crystallography, X-Ray, Membrane Proteins, Models, Molecular, Software, Structural Homology, Protein, X-Ray Diffraction