Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Potassium (K (+)) channels can regulate ionic conduction through their pore by a mechanism, involving the selectivity filter, known as C-type inactivation. This process is rapid in the hERG K (+) channel and is fundamental to its physiological role. Although mutations within hERG are known to remove this process, a structural basis for the inactivation mechanism has yet to be characterized. Using MD simulations based on homology modeling, we observe that the carbonyl of the filter aromatic, Phe627, forming the S 0 K (+) binding site, swiftly rotates away from the conduction axis in the wild-type channel. In contrast, in well-characterized non-inactivating mutant channels, this conformational change occurs less frequently. In the non-inactivating channels, interactions with a water molecule located behind the selectivity filter are critical to the enhanced stability of the conducting state. We observe comparable conformational changes in the acid sensitive TASK-1 channel and propose a common mechanism in these channels for regulating efflux of K (+) ions through the selectivity filter.

Original publication

DOI

10.1021/bi800475j

Type

Journal article

Journal

Biochemistry

Publication Date

15/07/2008

Volume

47

Pages

7414 - 7422

Keywords

Amino Acid Sequence, Computer Simulation, Humans, Hydrogen-Ion Concentration, Lipid Bilayers, Models, Molecular, Molecular Sequence Data, Phosphatidylcholines, Potassium Channels, Protein Conformation