Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Numerous top-down kinetic models have been constructed to describe the cell cycle. These models have typically been constructed, validated and analyzed using model species (molecular intermediates and proteins) and phenotypic observations, and therefore do not focus on the individual model processes (reaction steps). We have developed a method to: (a) quantify the importance of each of the reaction steps in a kinetic model for the positioning of a switch point [i.e. the restriction point (RP)]; (b) relate this control of reaction steps to their effects on molecular species, using sensitivity and co-control analysis; and thereby (c) go beyond a correlation towards a causal relationship between molecular species and effects. The method is generic and can be applied to responses of any type, but is most useful for the analysis of dynamic and emergent responses such as switch points in the cell cycle. The strength of the analysis is illustrated for an existing mammalian cell cycle model focusing on the RP [Novak B, Tyson J (2004) J Theor Biol230, 563-579]. The reactions in the model with the highest RP control were those involved in: (a) the interplay between retinoblastoma protein and E2F transcription factor; (b) those synthesizing the delayed response genes and cyclin D/Cdk4 in response to growth signals; (c) the E2F-dependent cyclin E/Cdk2 synthesis reaction; as well as (d) p27 formation reactions. Nine of the 23 intermediates were shown to have a good correlation between their concentration control and RP control. Sensitivity and co-control analysis indicated that the strongest control of the RP is mediated via the cyclin E/Cdk2:p27 complex concentration. Any perturbation of the RP could be related to a change in the concentration of this complex; apparent effects of other molecular species were indirect and always worked through cyclin E/Cdk2:p27, indicating a causal relationship between this complex and the positioning of the RP.

Original publication

DOI

10.1111/j.1742-4658.2009.07473.x

Type

Journal article

Journal

FEBS J

Publication Date

01/2010

Volume

277

Pages

357 - 367

Keywords

Animals, Cell Cycle, Cyclin E, Cyclin-Dependent Kinase 2, Cyclin-Dependent Kinase Inhibitor p27, G1 Phase, Humans, Kinetics, Models, Biological, Multiprotein Complexes, Neoplasms