Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Several close analogues of the noncovalent H(+)/K(+)-ATPase inhibitor SCH28080 (2-methyl-3-cyanomethyl-8-(phenylmethoxy)imidazo[1,2-a]pyridine) have been screened for activity and examined in the pharmacological site of action by solid-state NMR spectroscopy. TMPIP, the 1,2,3-trimethyl analogue of SCH28080, and variants of TMPIP containing fluorine in the phenylmethoxy ring exhibited IC(50) values for porcine H(+)/K(+)-ATPase inhibition falling in the sub-10 microm range. Deuterium NMR spectra of a (2)H-labeled inhibitor titrated into H(+)/K(+)-ATPase membranes revealed that 80-100% of inhibitor was bound to the protein, and K(+)-competition (2)H NMR experiments confirmed that the inhibitor lay within the active site. The active binding conformation of the pentafluorophenylmethoxy analogue of TMPIP was determined from (13)C-(19)F dipolar coupling measurements using the cross-polarization magic angle spinning NMR method, REDOR. It was found that the inhibitor adopts an energetically favorable extended conformation falling between fully planar and partially bowed extremes. These findings allowed a model to be proposed for the binding of this inhibitor to H(+)/K(+)-ATPase based on the results of independent site-directed mutagenesis studies. In the model, the partially bowed inhibitor interacts with Phe(126) close to the N-terminal membrane spanning helix M1 and residues in the extracellular loop bridging membrane helices M5 and M6 and is flanked by residues in M4.

Original publication




Journal article


J Biol Chem

Publication Date





43197 - 43204


Adenosine Triphosphatases, Animals, Binding Sites, Enzyme Inhibitors, Fluorine, H(+)-K(+)-Exchanging ATPase, Imidazoles, Inhibitory Concentration 50, Magnetic Resonance Spectroscopy, Models, Chemical, Models, Molecular, Mutagenesis, Site-Directed, Phenylalanine, Protein Binding, Protein Structure, Tertiary, Proton Pump Inhibitors, Protons, Stomach, Swine