Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Peptide synthesis is widely used for the production of small proteins and peptides, but producing uniformly isotopically labelled peptides for NMR and other biophysical studies could be limited for economic reasons. Here, we propose a use of a modified pGEV-1 plasmid to express neurotensin (NT(1-13)), pGlu(1)-Leu(2)-Tyr(3)-Glu(4)-Asn(5)-Lys(6)-Pro(7)-Arg(8)-Arg(9)-Pro(10)-Tyr(11)-Ile(12)-Leu(13)-OH, as a C-terminal fusion protein with the GB1 domain of streptococcal protein G. The free carboxyl-terminus is important for the function of several peptide hormones, including neurotensin. Therefore, for the pGEV-NT(1-13) construct, the C-terminal pGEV-encoded 6xHis tag was removed and an N-terminal 8xHis tag was introduced for affinity purification. To facilitate removal of tags using CNBr cleavage, a methionine was introduced at the N-terminal of the peptide. Furthermore, this pGEV-NT(1-13) plasmid was used as a template to include a Pro-7 to Met mutation for CNBr cleavage, giving NT(8-13), the sub-fragment crucial for the biological activity of this peptide. These two constructs are being used to produce uniformly labelled NT(1-13) and NT(8-13) in high yield and in a cost effective way, using cheap (15)N and/or (13)C source. The modification proposed here using the pGEV-1 plasmid could be an alternative option for the high expression of other isotopically labelled and unlabelled short peptides, including hormones and hydrophobic membrane peptides.

Original publication




Journal article


Protein Expr Purif

Publication Date





65 - 68


Amino Acid Sequence, Animals, Bacterial Proteins, Cattle, Escherichia coli, Gene Expression, Neurotensin, Peptide Fragments, Plasmids, Recombinant Fusion Proteins, Streptococcus