Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Homologous recombination (HR) is required to promote both correct chromosome segregation and genetic variation during meiosis. For this to be successful recombination intermediates must be resolved to generate reciprocal exchanges or 'crossovers' between the homologous chromosomes (homologues) during the first meiotic division. Crossover recombination promotes faithful chromosome segregation by establishing connections (chiasmata) between the homologues, which help guide their proper bipolar alignment on the meiotic spindle. Recent studies of meiotic recombination in both the budding and fission yeasts have established that there are at least two pathways for generating crossovers. One pathway involves the resolution of fully ligated four-way DNA junctions [HJs (Holliday junctions)] by an as yet unidentified endonuclease. The second pathway appears to involve the cleavage of the precursors of ligated HJs, namely displacement (D) loops and unligated/nicked HJs, by the Mus81-Eme1/Mms4 endonuclease.

Original publication

DOI

10.1042/BST20051451

Type

Journal article

Journal

Biochem Soc Trans

Publication Date

12/2005

Volume

33

Pages

1451 - 1455

Keywords

Chromosome Segregation, Chromosomes, Crossing Over, Genetic, DNA Damage, DNA Repair, DNA, Cruciform, Humans, Meiosis, Saccharomyces cerevisiae, Schizosaccharomyces