Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Ion channels are gated, i.e. they can switch conformation between a closed and an open state. Molecular dynamics simulations may be used to study the conformational dynamics of ion channels and of simple channel models. Simulations on model nanopores reveal that a narrow (<4 A) hydrophobic region can form a functionally closed gate in the channel and can be opened by either a small (approximately 1 A) increase in pore radius or an increase in polarity. Modelling and simulation studies confirm the importance of hydrophobic gating in K channels, and support a model in which hinge-bending of the pore-lining M2 (or S6 in Kv channels) helices underlies channel gating. Simulations of a simple outer membrane protein, OmpA, indicate that a gate may also be formed by interactions of charged side chains within a pore, as is also the case in ClC channels.


Journal article



Publication Date





85 - 90


Bacterial Outer Membrane Proteins, Hydrophobic and Hydrophilic Interactions, Ion Channel Gating, Ion Channels, Models, Molecular, Potassium Channels, Protein Conformation, Thermodynamics