Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The acetylcholine-binding protein (AChBP) is homologous to the ligand-binding domain of the nicotinic acetylcholine receptor (nAChR) and other members of the Cys-loop family of neurotransmitter receptors. The high-resolution X-ray structures of AChBP mean it has been used as a model from which to understand agonist and antagonist binding to nAChRs. We present here a molecular dynamics (MD) study of AChBP with nicotine and carbamylcholine bound. Our results suggest that the ligand imposes rigidity on the binding pocket residues. The simulations also suggest that the protein undergoes breathing motions with respect to the five-fold axis, a motion that has been postulated to be related to gating in the nAChR. We analyzed the behaviour of the water molecules in and around the binding site and found that they occupied five distinct sites within the binding pocket. Water occupied these sites in the absence of ligand, but the presence of ligand increased the probability that a water molecule would be found in these sites. Finally, we demonstrate how the positions of these waters might be used in the design of new ligands by comparing the positions of these sites with other recent structures.

Original publication

DOI

10.1093/protein/gzm029

Type

Journal article

Journal

Protein Eng Des Sel

Publication Date

07/2007

Volume

20

Pages

353 - 359

Keywords

Binding Sites, Carbachol, Carrier Proteins, Ligands, Models, Molecular, Nicotine, Water