Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mutations in the human fibrillin-1 (FBN-1) gene cause Marfan syndrome (MFS), an autosomal dominant disease of connective tissue. Fibrillin-1, a 350 kDa extracellular calcium binding protein, is a major structural component of 10-12 nm microfibrils and consists predominantly of two repeated module types: the calcium binding epidermal growth factor-like (cbEGF) domain and the transforming growth factor beta1 binding protein-like (TB) domain. A group of reported FBN-1 mutations is predicted to reduce calcium binding to cbEGF domains by removal of a side chain ligand for calcium. These mutations occur in two protein domain contexts, either in a cbEGF preceded by a TB domain or in a cbEGF preceded by another cbEGF domain. In this study we have used three proteases to probe structural changes caused by an N2144S MFS calcium binding mutation in a TB6-cbEGF32 and a cbEGF32-33 domain pair, and an N2183S mutation in the cbEGF32-33 pair. N-terminal sequence analysis of domain pairs digested in the presence and absence of calcium show that: (i) domain interactions between TB6 and cbEGF32 are calcium independent, despite the presence of a calcium binding site in cbEGF32; (ii) domain interactions between cbEGF32 and cbEGF33 are calcium dependent; and (iii) an N-->S mutation causes increased proteolytic susceptibility only when located in cbEGF33, consistent with a key role for interdomain calcium binding in rigidifying cbEGF domain linkages. These data demonstrate for the first time that the structural consequences of calcium binding mutations in fibrillin-1 cbEGF domains can be influenced by domain context.

Type

Journal article

Journal

Hum Mol Genet

Publication Date

12/08/2000

Volume

9

Pages

1987 - 1994

Keywords

Calcium, Calcium-Binding Proteins, Extracellular Matrix Proteins, Fibrillin-1, Fibrillins, Fibrinolysin, Humans, Marfan Syndrome, Microfilament Proteins, Mutation, Missense, Pancreatic Elastase, Protein Structure, Secondary, Protein Structure, Tertiary, Trypsin