Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The cytoplasmic membrane protein TatB is an essential component of the Escherichia coli twin-arginine (Tat) protein translocation pathway. Together with the TatC component it forms a complex that functions as a membrane receptor for substrate proteins. Structural predictions suggest that TatB is anchored to the membrane via an N-terminal transmembrane alpha-helix that precedes an amphipathic alpha-helical section of the protein. From truncation analysis it is known that both these regions of the protein are essential for function. Here we construct 31 unique cysteine substitutions in the first 42 residues of TatB. Each of the substitutions results in a TatB protein that is competent to support Tat-dependent protein translocation. Oxidant-induced disulfide cross-linking shows that both the N-terminal and amphipathic helices form contacts with at least one other TatB protomer. For the transmembrane helix these contacts are localized to one face of the helix. Molecular modeling and molecular dynamics simulations provide insight into the possible structural basis of the transmembrane helix interactions. Using variants with double cysteine substitutions in the transmembrane helix, we were able to detect cross-links between up to five TatB molecules. Protein purification showed that species containing at least four cross-linked TatB molecules are found in correctly assembled TatBC complexes. Our results suggest that the transmembrane helices of TatB protomers are in the center rather than the periphery of the TatBC complex.

Original publication

DOI

10.1074/jbc.M607295200

Type

Journal article

Journal

J Biol Chem

Publication Date

10/11/2006

Volume

281

Pages

34072 - 34085

Keywords

Amino Acid Sequence, Amino Acid Substitution, Arginine, Binding Sites, Cell Membrane, Computer Simulation, Cysteine, Disulfides, Escherichia coli, Escherichia coli Proteins, Membrane Transport Proteins, Models, Molecular, Molecular Sequence Data, Mutagenesis, Mutation, Periplasmic Binding Proteins, Promoter Regions, Genetic, Protein Structure, Tertiary, Protein Transport