Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The structure and dynamics of a double (13)C-labelled 24-residue synthetic peptide ([(13)C(2)]CAPLB(29-52)), corresponding to the membrane-spanning sequence of phospholamban (PLB), were examined using (13)C cross-polarisation magic-angle spinning (CP-MAS) NMR spectroscopy. CP-MAS spectra of [(13)C(2)]CAPLB(29-52) reconstituted into unsaturated lipid membranes indicated that the peptide was mobile at temperatures down to -50 degrees C. The NMR spectra showed that peptide motion became constrained in the presence of the SERCA1 isoform of Ca(2+)-ATPase, and chemical cross-linking experiments indicated that [(13)C(2)]CAPLB(29-52) and Ca(2+)-ATPase came into close contact with one another. These results together suggested that the peptide and the 110-kDa calcium pump were interacting in the membrane. Rotational resonance CP-MAS (13)C-(13)C distance measurements on [(13)C(2)]CAPLB(29-52) reconstituted into lipid bilayers confirmed that the sequence spanning Phe-32 and Ala-36 was alpha-helical, and that this structure was not disrupted by interaction with Ca(2+)-ATPase. These results support the finding that the transmembrane domain of PLB is partially responsible for regulation of Ca(2+) transport through interactions with cardiac muscle Ca(2+)-ATPase in the lipid bilayer, and also demonstrate the feasibility of performing structural measurements on PLB peptides when bound to their physiological target.

Type

Journal article

Journal

Biochim Biophys Acta

Publication Date

29/09/2000

Volume

1468

Pages

187 - 198

Keywords

Amino Acid Sequence, Animals, Calcium-Binding Proteins, Calcium-Transporting ATPases, Cell Membrane, Circular Dichroism, Cytoplasm, Lipid Bilayers, Magnetic Resonance Spectroscopy, Molecular Sequence Data, Peptides, Phosphorylation, Protein Conformation, Protein Structure, Secondary, Rabbits, Sarcoplasmic Reticulum, Temperature