Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The periplasmic nitrate reductase (NAP) from Paracoccus pantotrophus is a soluble two-subunit enzyme (NapAB) that binds two c-type haems, a [4Fe-4S] cluster and a bis-molybdopterin guanine dinucleotide cofactor that catalyses the reduction of nitrate to nitrite. In the present work the NapAB complex has been studied by magneto-optical spectroscopy to probe co-ordination of both the NapB haems and the NapA active site Mo. The absorption spectrum of the NapAB complex is dominated by features from the NapB c-type cytochromes. Using a combination of electron paramagnetic resonance spectroscopy and magnetic circular dichroism it was demonstrated that both haems are low-spin with bis-histidine axial ligation. In addition, a window between 600 and 800 nm was identified in which weak absorption features that may arise from Mo could be detected. The low-temperature MCD spectrum shows oppositely signed bands in this region (peak 648 nm, trough 714 nm) which have been assigned to S-to-Mo(V) charge transfer transitions.

Type

Journal article

Journal

FEBS Lett

Publication Date

29/06/2001

Volume

500

Pages

71 - 74

Keywords

Amino Acid Sequence, Circular Dichroism, Electron Spin Resonance Spectroscopy, Heme, Molecular Sequence Data, Molybdenum, Nitrate Reductase, Nitrate Reductases, Paracoccus, Sequence Homology, Amino Acid