Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Human fibrillin-1, an extracellular matrix glycoprotein, has a modular organization that includes 43 calcium-binding epidermal growth factor-like (cbEGF) domains arranged as multiple tandem repeats. A missense mutation that changes a highly conserved glycine to serine (G1127S) has been identified in cbEGF13, which results in a variant of Marfan syndrome, a connective tissue disease. Previous experiments on isolated cbEGF13 and a cbEGF13-14 pair indicated that the G1127S mutation caused defective folding of cbEGF13 but not cbEGF14. We have used limited proteolysis methods and two-dimensional NMR spectroscopy to identify the structural consequences of this mutation in a covalently linked cbEGF12-13 pair and a cbEGF12-14 triple domain construct. Protease digestion studies of the cbEGF12-13 G1127S mutant pair indicated that both cbEGF12 and 13 retained similar calcium binding properties and thus tertiary structure to the normal domain pair, because all identified cleavage sites showed calcium-dependent protection from proteolysis. However, small changes in the conformation of cbEGF13 G1127S, revealed by the presence of a new protease-sensitive site and comparative two-dimensional NOESY data, suggested that the fold of the mutant domain was not identical to the wild-type, but was native-like. Additional cleavage sites identified in cbEGF12-14 G1127S indicated further subtle changes within the mutant domain but not the flanking domains. We have concluded the following in this study. (i) Covalent linkage of cbEGF12 preserves the native-like fold of cbEGF13 G1127S and (ii) conformational effects introduced by G1127S are localized to cbEGF13. This study demonstrates that missense mutations in fibrillin-1 cbEGF domains can cause short range structural effects in addition to long range effects previously observed with a E1073K mutation in cbEGF12.

Original publication

DOI

10.1074/jbc.M006547200

Type

Journal article

Journal

J Biol Chem

Publication Date

18/05/2001

Volume

276

Pages

17156 - 17162

Keywords

Amino Acid Sequence, Amino Acid Substitution, Binding Sites, Calcium, Cloning, Molecular, Conserved Sequence, Epidermal Growth Factor, Extracellular Matrix Proteins, Fibrillin-1, Fibrillins, Genetic Variation, Glycine, Humans, Marfan Syndrome, Microfilament Proteins, Models, Molecular, Molecular Sequence Data, Mutation, Missense, Nuclear Magnetic Resonance, Biomolecular, Protein Conformation, Protein Structure, Secondary, Recombinant Proteins, Serine