Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The molten globule state is a partially folded conformer of proteins that has been the focus of intense study for more than two decades. This non-native fluctuating conformation has been linked to protein-folding intermediates, to biological function, and more recently to precursors in amyloid fibril formation. The molten globule state of human serum retinol-binding protein (RBP) has been postulated previously to be involved in the mechanism of ligand release (Ptitsyn, O. B., et al. (1993) FEBS Lett. 317, 181-184). Conserved residues within RBP have been identified and proposed to be key to folding and stability, although a link to a molten globule state has not previously been shown (Greene, L. H., et al. (2003) FEBS Lett. 553, 39-44). In this work, a detailed characterization of the acid-induced molten globule of RBP is presented. Using stopped-flow fluorescence spectroscopy in the presence of 8-anilino-1-naphthalene sulfonic acid (ANS), we show that RBP populates a state with molten-globule-like characteristics early in refolding. To gain insight into the structural features of the molten globule of RBP, we have monitored the denaturant-induced unfolding of this ensemble using NMR spectroscopy. The transition at the level of individual residues is significantly more cooperative than that found previously for the archetypal molten globule, alpha-lactalbumin (alpha-LA); this difference may be due to a predominantly beta-sheet structure present in RBP in contrast to the alpha-helical nature of the alpha-LA molten globule.

Original publication




Journal article



Publication Date





9475 - 9484


Amino Acid Sequence, Anilino Naphthalenesulfonates, Blood Proteins, Circular Dichroism, Conserved Sequence, Humans, Magnetic Resonance Spectroscopy, Molecular Sequence Data, Protein Folding, Protein Structure, Secondary, Retinol-Binding Proteins