Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Researchers at Oxford University have received a prestigious Wellcome Innovator Grant for investigating the role of the pedunculopontine nucleus (PPN) – a brainstem nucleus – in human consciousness.

The study is a collaboration between Neurosurgery (Associate Professor Alex Green at the Nuffield Department of Surgical Sciences, NDS), Engineering (Professor Tim Denison at the Department of Engineering Science and the MRC Brain Network Dynamics Unit), and Neurology (Dr Damian Jenkins at the Nuffield Department of Clinical Neurosciences). It builds on pilot data from Dr Alceste Deli who, during her DPhil, has shown that PPN stimulation can alter sleep and arousal states.

The project will involve a 10-subject first-in-man clinical trial of PPN stimulation in patients with minimally conscious state (MCS) following brain injury (trauma or stroke) and will involve further development of a Deep Brain Stimulation investigational system called the ‘Picostim-DyNeuMo’ that was developed in a strategic collaboration between Professor Denison and Bioinduction, Ltd, a UK-based company developing implantable medical devices. The Picostim-DyNeuMo embeds instrumentation that enables novel clinical neuroscience using therapeutic neurostimulators.

The research team aim to identify biomarkers that signify arousal state, within the brain and on EEG, and to develop ‘closed-loop’ stimulation patterns that optimise increased arousal and improve sleep. The device will also take into account circadian rhythms that are often disrupted in patients with MCS.

The trial will be supported by the Surgical Intervention Trials Unit (SITU) at NDS (Ms Lucy Davies) and there will be an ethical component led by Professor Julian Savulescu at the Oxford Martin School. Dr Martin Gillies from NDS will also be involved in the running of the project.

brainstem2

The patients in the trial will be implanted with Deep Brain Stimulating electrodes (connected to an Implantable Pulse Generator) into the PPN (brainstem) and signals from the brain (local field potentials), EEG (electroencephalogram) and other signals, such as physical activity, will be used to control the system in a ‘closed loop’ manner.

Similar stories

New European initiative to accelerate the discovery and validation of biomarkers for neurodegenerative diseases

Members of the European Platform for Neurodegenerative Diseases (EPND) will establish a collaborative platform for efficient sample and data sharing, linking existing European research infrastructures to accelerate the discovery of biomarkers, new diagnostics and treatments for the benefit of people with neurodegenerative diseases such as Alzheimer's and Parkinson's.

Experimental Medicine and Industry Partnership

The recent launch event of the Experimental Medicine Industry Partnership was an exciting collaboration between industry representatives and researchers from the University of Oxford. During the event, a series of workshops were held to discuss opportunities, challenges, and future directions for the application of experimental medicine in psychiatric drug development.

Major research network to investigate body clock and stroke

The University of Oxford is part of a new international research network to investigate the interactions between the biology of the body's internal clock and the disordered physiological processes associated with stroke.

Mapping uncharted networks in the progression of Parkinson’s

A major new $9 million project funded by the Aligning Science Across Parkinson’s (ASAP) initiative will map the original circuits vulnerable to Parkinson’s on an unprecedented scale. The project is a collaboration between a core team of Stephanie Cragg, Richard Wade-Martins, and Peter Magill at Oxford, Mark Howe at Boston University and Dinos Meletis at the Karolinska Institute, as well as collaborators Yulong Li at Peking University and Michael Lin at Stanford University.