Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Newborn brain scans from the Developing Human Connectome Project are now available online in large-scale open-source project, clarifying how some diseases develop.

The Developing Human Connectome Project (dCHP) has performed ground-breaking Magnetic Resonance (MR) brain scans of over 800 newborn babies. A collaboration between King’s College London, Imperial College London and the University of Oxford, the images are the team's third open-source large-scale data release of this project, uncovering how wiring and function of the brain develops during pregnancy and after birth, shedding light on how diseases like autism develop, and how problems in pregnancy affect brain growth. 

This is the result of many years hard coordinated work across our three universities, and has resulted in the most amazing, rich data on how the brain develops just before and after birth. We're very excited to release the dataset to the international research community.
- Professor Stephen Smith, Wellcome Centre for Integrative Neuroimaging

These new scans complete a neonatal dataset of brain images and associated clinical data. The imaging data includes structural imaging, structural connectivity data (diffusion MRI) and functional connectivity data (resting-state fMRI).  

Professor David Edwards, corresponding principal investigator, believes that, with the data from this release, researchers can map the effects of many factors on brain development, for instance examining the effects of air pollution or maternal health on the developing brain.  

'We have health outcome data, so researchers can also look at how the brain at birth predicts what you are like later on,' he said. 

This data release comes with simple accompanying metadata: sex, age at birth, age at scan, birthweight, head circumference and radiology score. Future data releases will provide foetal images (imaging babies in the womb), more detailed ancillary data as well as genetic and clinical data.  

For these scans, most of the babies were imaged while naturally asleep. If the baby woke up, scanning was stopped and attempts made to resettle before proceeding. If a baby moved, the team ensured all the data was motion corrected, largely using methods developed specifically for the dHCP project, in order to produce highly detailed and rich information on brain development. 

Currently the researchers are analysing the images to ask questions about how the brain develops, how air pollution might affect brain growth as a foetus or as a new-born, and whether early birth negatively affects brain development.  

The research consortium is funded by a €15 million Synergy grant from the European Research Council. The aim is to ensure data is shared as widely as possible. Future releases will include data from babies still in the womb as well as information on children’s genes and their abilities as they grow up. 

Researchers are able to download the data pack now

Similar stories

How to use the science of the body clock to improve our sleep and health

Professor Russell Foster has written a new book about circadian neuroscience which is published by Penguin this week. This book review by Jacqueline Pumphrey was first published on the University of Oxford website.

NICE recommends offering app-based treatment for people with insomnia instead of sleeping pills

Hundreds of thousands of people suffering from insomnia who would usually be prescribed sleeping pills could be offered an app-based treatment programme instead, NICE has said.

New Study Shows Simvastatin Can Change the Way People Experience Certain Emotions

This new study examines the effects of simvastatin on emotional processing, reward learning, verbal memory, and inflammation.

Developmental dynamics of the neural crest–mesenchymal axis in creating the thymic microenvironment

A new paper from researchers at the Department of Paediatrics and the Nuffield Department of Clinical Neurosciences has shown that fibroblasts in the thymus, often considered simply as dull “structural” cells, are much more complex than previously thought.

Oxford researchers part of major UK initiative to understand chronic pain

Oxford pain researchers are playing a major role in a new multi-million pound research programme launched by a consortium of funders, including UKRI, Versus Arthritis, Eli Lilly and the Medical Research Foundation.