Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

One of the hallmarks of Parkinson’s disease (PD) is the presence of abnormal synchronised oscillatory activity within the basal ganglia at certain frequencies. This activity may jam normal communication within brain circuits governing movement, leading to the symptoms of PD. It is unclear however how this activity arises, or how it may be best treated in individual patients.

Ashwini Oswal is a Clinical Lecturer in Neurology affiliated to two of NDCN's divisions: the MRC Brain Network Dynamics Unit and the Division of Clinical Neurology. He and his colleagues have integrated imaging approaches (MRI tractography, magnetoencephalography and invasive recordings) in PD patients undergoing treatment with Deep Brain Stimulation, in an attempt to provide an improved understanding of how abnormal oscillatory synchrony arises in PD. 

Using multimodal imaging and computational models they observed that a direct pathway linking the motor cortex and the basal ganglia (known as the hyperdirect pathway) may be responsible for triggering abnormal synchrony within the basal ganglia in PD.

These findings could allow the development of more intelligent brain stimulation techniques that specifically target the hyperdirect pathway and ameliorate abnormal synchrony within the basal ganglia.  

Image caption: A: visualization of Deep Brain Stimulation electrodes targeting the subthalamic nucleus in Parkinson’s disease (PD) patients. B: Top; white matter tracts passing between cortical areas and the STN in PD (‘hyperdirect pathway’). The green and blue contours represent the supplementary motor area (SMA) and primary motor cortex. Middle; coupling between cortical areas and the STN at high beta band (21-30 Hz) frequencies. Bottom; Regions where high beta band cortico-STN coupling is predicted by anatomical connectivity within the hyperdirect pathway. C: Computational models reveal that high beta band cortical inputs to the STN can trigger the generation of lower beta frequencies which are believed to be pathological.

Read the paper

Similar stories

Viewing self-harm images on the internet and in social media usually causes harm, according to new review

Clinical researchers have reviewed the international research evidence regarding the impact of viewing images of self-harm on the internet and in social media.

Can humans hibernate?

Illuminating new TEDx Talk from Professor of Sleep Physiology Vladyslav Vyazovskiy

European Platform for Neurodegenerative Diseases launches repository of cohorts for researchers

The new Cohort Catalogue will facilitate discovery of over 60 neurodegeneration research cohorts from 17 countries across Europe

New insights into chemogenetic designer drugs to enhance our study of behaviour

A collaborative team of researchers in DPAG and Pharmacology led by Dr Lukas Krone have uncovered striking new data demonstrating that two widely used designer drugs used to turn populations of neurons on and off in the brain cause unexpected effects on sleep. These results demonstrate a critical need to improve chemogenetic approaches in behavioural studies.

Researchers win UK Dementia Research Institute Grand Challenge Award to identify early signs of Alzheimer's

The MRC Brain Network Dynamics Unit has received funding for a multi-year research partnership designed to advance the understanding of early changes to the operations of brain circuits in Alzheimer's disease.

Ensuring LGBTQI+ people are treated fairly in mental health data

Andrey Kormilitzin outlines a new participatory study aimed at improving AI to take account of LGBTQI+ people so that their needs are better met by mental health services.