Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Until September BBC Gardeners’ World magazine is running a monthly feature ‘Grow Yourself Healthy’. The May issue focuses on how gardens and gardening can improve sleep, and featured Julie Darbyshire, researcher for the University of Oxford Critical Care Research Group (Nuffield Department of Clinical Neurosciences), alongside other sleep researchers and experts, discussing the benefits of gardening ahead of the RHS flagship flower show in Chelsea.

If you’re not tired, you’re not going to fall asleep. It is perhaps obvious when you think about it, but many of us don’t. We all know we should have 30 minutes of exercise every day but with today’s hectic lifestyle many of us struggle to find the time. Thankfully, for the gym-phobic amongst us with memories of wet and cold cross-country days across the muddy school playing field, exercise needn’t be always about running, or going to the gym. Ever tried digging over a flower bed or veg plot? Gardening can be a great way to achieve an all-body workout. It can also be a low-impact path to being a little bit more active. Some gentle pottering in the garden (beneficial in itself) can lead to other tasks, which leads to more physical exertion, which can only ever be a good thing... But physical exercise is not the only way that gardening can help you sleep at night.

Sleep is hugely influenced by your natural circadian rhythm. Every cell in the human body has a clock that’s controlled by the suprachiasmatic nucleus (SCN) in the brain. The SCN is linked directly to the eyes. Light then, is a key driver to circadian control. Research has demonstrated if you put people into dark places with no external clues to the time of day, their circadian rhythms will become abnormal very quickly. The body needs appropriate exposure to daylight to regulate the body’s responses to help ‘reset’ this clock and keep you “on time”. Many of us spend the majority of the day inside. Light levels in an office, even close to a window, will be far below those of bright natural daylight which is around 20,000 lux. The spectrum of light inside is also quite different. Natural daylight is quite ‘blue’ (5000-6500K) and the body expects a change to more orange/red tones as the day fades to night. This is one of the reasons why ‘screen time’ in the evening isn’t good when you are supposed to be preparing for sleep. The light entering the eyes is too blue for the time of day. Spending the majority of the day inside where light levels are both low (lux levels around 150 are not uncommon) and often in the ‘warmer’ spectrum range (<3000K) is biologically confusing. Getting outside, getting a bit out of breath, and even being a bit chilly, are the best ways to regulate your body clock.

Read more (Oxford Science Blog, University of Oxford website)

Similar stories

Collaborating with Youth is Key to Studying Mental Health Management

Research Highlights

The Global Mental Health Databank, a feasibility study, hopes to enable youth from the United Kingdom, South Africa, and India to work directly with mental health researchers to better understand how young people can manage their own mental health.

SSRI Treatment in Young People with Depression and Anxiety

Research Highlights

Results from an insight review commissioned by the Wellcome Trust, highlights what is currently known about the benefits and risks of using selective serotonin reuptake inhibitors (SSRIs) for the treatment of depression and anxiety in young people.

The brain understands relationships in the same way as it understands how to move in space

Research Highlights

Researchers led by a team at the Wellcome Centre for Integrative Neuroimaging at the University of Oxford have developed a new framework that binds together the way the brain forms maps of space to the way the brain understands relationships of any kind – general mental maps.

Researchers reveal surprising simplicity behind our ability to hear

Research Highlights

A computational modelling study from the King Group demonstrates that the way sounds are transformed from the ear to the brain’s auditory cortex may be simpler than expected. These findings not only highlight the value of computational modelling for determining the principles underlying neural processing, but could also be useful for improving treatments for patients with hearing loss.