Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A new study from the Vyazovskiy group suggests that how and where we spend our time while awake impacts how much we need to sleep - it does not only depend on how long we are awake.

The prevailing notion is that our sleep habits are hard-wired in some way, or genetically determined, and that all animals, including humans, have to perform a certain, non-negotiable amount of sleep every day. To this end, major research efforts in the last few decades have been focused on investigating the underlying biology of "sleep need", targeting a broad range of molecules, physiological processes or brain areas. However, according to DPAG’s lead sleep researcher Associate Professor Vladyslav Vyazovskiy: “What we tend to forget is that wakefulness and sleep are defined, by and large, by the interaction of the organism with its environment. Consistently, evidence accumulates that "sleep need" can vary greatly depending on external conditions or other homeostatic drives, in addition to the genetic makeup.”

A new study from the Vyazovskiy lab supports this view. The study, led by DPhil student Linus Milinski, addresses whether changes in an animal's environment would affect its wake behaviours, and whether this, in turn, would affect its subsequent sleep. The team’s main experiment trained mice on a simple ‘nose poke’ task, using a touchscreen operant chamber. Unexpectedly, the animals sometimes performed the task, voluntarily, for many hours in a row, even during the day, which is a habitual sleep time in laboratory mice. Professor Vyazovskiy said: “We therefore hypothesised that certain wake behaviours may slow down the accumulation of ‘tiredness’ during continuous waking, resulting in a reduced sleep need.” Consistent with this hypothesis, the researchers found that during subsequent sleep, EEG slow waves, an established marker of homeostatic sleep need, were markedly lower after wake dominated by a simple task performance, when compared to wake spent in an enriched environment.

While further research is required to further our understanding of how sleep is affected by wake activities, the study concludes that wake ‘quality’ is important for subsequent sleep, and that the effect of environmental factors and motivation are key factors to consider in sleep studies. According to Professor Vyazovskiy: “Arguably, the time spent awake and specific wake activities are determined, to a large extent, by environmental contingencies, both predictable and unpredictable. Therefore, changes in sleep habits, produced by our experimental manipulations, can arise primarily from an altered relationship between the organism and the environment. In this respect, our study makes a strong case that studying sleep in an ecological context can provide new insights, beyond those obtained in standard laboratory conditions.”

The full paper “Waking experience modulates sleep need in mice”, in collaboration with Professor David Bannerman from the Department of Experimental Psychology, is available to read in BMC Biology.

Similar stories

Viewing self-harm images on the internet and in social media usually causes harm, according to new review

Clinical researchers have reviewed the international research evidence regarding the impact of viewing images of self-harm on the internet and in social media.

Can humans hibernate?

Illuminating new TEDx Talk from Professor of Sleep Physiology Vladyslav Vyazovskiy

European Platform for Neurodegenerative Diseases launches repository of cohorts for researchers

The new Cohort Catalogue will facilitate discovery of over 60 neurodegeneration research cohorts from 17 countries across Europe

New insights into chemogenetic designer drugs to enhance our study of behaviour

A collaborative team of researchers in DPAG and Pharmacology led by Dr Lukas Krone have uncovered striking new data demonstrating that two widely used designer drugs used to turn populations of neurons on and off in the brain cause unexpected effects on sleep. These results demonstrate a critical need to improve chemogenetic approaches in behavioural studies.

Researchers win UK Dementia Research Institute Grand Challenge Award to identify early signs of Alzheimer's

The MRC Brain Network Dynamics Unit has received funding for a multi-year research partnership designed to advance the understanding of early changes to the operations of brain circuits in Alzheimer's disease.

Ensuring LGBTQI+ people are treated fairly in mental health data

Andrey Kormilitzin outlines a new participatory study aimed at improving AI to take account of LGBTQI+ people so that their needs are better met by mental health services.