Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Crosstalk between the post-translational modification processes of ubiquitination and ADP-ribosylation occurs in DNA-damage- and immune-responses, in addition the physical linkage of ADP-ribose and ubiquitin is found during bacterial infection. Here, we study the ubiquitination of ADP-ribose mediated by human Deltex E3 ligases and the subsequent fate of the formed hybrid post-translational modification. We prepare a non-hydrolysable ADPr-Ub probe that we employ in a proteomics approach and identify RNF114 as an interacting protein. Using biophysical and biochemical experiments, we validate that RNF114 preferentially interacts with ubiquitinated ADP-ribose over non-modified ubiquitin. Subsequently, RNF114 can elongate the ubiquitinated ADP-ribose with a K11-linked ubiquitin chain. Using domain deletion analysis, we pinpoint the tandem zinc fingers and ubiquitin interacting motif (ZnF2 + ZnF3+UIM) domains of RNF114 to be crucial for recognising ubiquitinated ADP-ribose. Moreover, these domains are essential for the recruitment of RNF114 to the sites of laser-induced DNA damage.

Original publication

DOI

10.1038/s41467-025-61111-7

Type

Journal article

Journal

Nat Commun

Publication Date

09/07/2025

Volume

16

Keywords

Humans, Adenosine Diphosphate Ribose, Ubiquitination, Ubiquitin-Protein Ligases, Ubiquitin, DNA Damage, ADP-Ribosylation, HEK293 Cells, Protein Processing, Post-Translational, Protein Binding, Protein Domains