Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cell cycle checkpoints preventing the replication and inheritance of damaged DNA are crucial for maintaining genome stability and stopping the growth of damaged cells. Canonical checkpoints do this by preventing passage between cell cycle phases until damage has been repaired, or by promoting cell cycle exit. Herein we review checkpoint integration between cell cycle phases, specifically findings showing that extended spindle assembly checkpoint surveillance in mitosis is a danger signal triggering G1 cell cycle arrest. Evidence linking mitotic delays induced by activation of the spindle assembly checkpoint with positive and negative regulators of the G1 DNA damage checkpoint target p53 is discussed, with a focus on time-dependent changes to a p53-binding deubiquitinating complex USP28-53BP1 and the p53 ubiquitin-ligase mouse double minute homologue 2 (MDM2), respectively.

Original publication

DOI

10.1016/j.tcb.2025.06.001

Type

Journal article

Journal

Trends Cell Biol

Publication Date

07/07/2025

Keywords

MDM2, aneuploidy, cell cycle, mitotic timer, p53, spindle assembly checkpoint