Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The use of machine learning to classify diagnostic cases versus controls defined based on diagnostic ontologies such as the International Classification of Diseases, Tenth Revision (ICD-10) from neuroimaging features is now commonplace across a wide range of diagnostic fields. However, transdiagnostic comparisons of such classifications are lacking. Such transdiagnostic comparisons are important to establish the specificity of classification models, set benchmarks, and assess the value of diagnostic ontologies. RESULTS: We investigated case-control classification accuracy in 17 different ICD-10 diagnostic groups from Chapter V (mental and behavioral disorders) and Chapter VI (diseases of the nervous system) using data from the UK Biobank. Classification models were trained using either neuroimaging (structural or functional brain magnetic resonance imaging feature sets) or sociodemographic features. Random forest classification models were adopted using rigorous shuffle-splits to estimate stability as well as accuracy of case-control classifications. Diagnostic classification accuracies were benchmarked against age classification (oldest vs. youngest) from the same feature sets and against additional classifier types (k-nearest neighbors and linear support vector machine). In contrast to age classification accuracy, which was high for all feature sets, few ICD-10 diagnostic groups were classified significantly above chance (namely, demyelinating diseases based on structural neuroimaging features and depression based on sociodemographic and functional neuroimaging features). CONCLUSION: These findings highlight challenges with the current disease classification system, leading us to recommend caution with the use of ICD-10 diagnostic groups as target labels in brain-based disease prediction studies.

Original publication

DOI

10.1093/gigascience/giae119

Type

Journal article

Journal

Gigascience

Publication Date

06/01/2025

Volume

14

Keywords

UK Biobank, machine learning, mental health disorders, nervous system diseases, neuroimaging, Humans, Neuroimaging, International Classification of Diseases, United Kingdom, Biological Specimen Banks, Male, Machine Learning, Case-Control Studies, Female, Magnetic Resonance Imaging, Middle Aged, Aged, Mental Disorders, UK Biobank