Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Fragment approaches are long-established in target-based ligand discovery, yet their full transformative potential lies dormant because progressing the initial weakly binding hits to potency remains a formidable challenge. The only credible progression paradigm involves multiple cycles of costly conventional design-make-test-analyse medicinal chemistry. We propose an alternative approach to fragment elaboration, namely performing large numbers of parallel and diverse automated multiple step reactions, and evaluating the binding of the crude reaction products by high-throughput protein X-ray crystallography. We show it is effective and low-cost to perform, in parallel, large numbers of non-uniform multi-step reactions, because, even without compound purification, crystallography provides a high-quality readout of binding. This can detect low-level binding of weakly active compounds, which the target binding site extracts directly from crude reaction mixtures. In this proof-of-concept study, we have expanded a fragment hit, from a crystal-based screen of the second bromodomain of pleckstrin homology domain-interacting protein (PHIP(2)), using array synthesis on low-cost robotics. We were able to implement 6 independent multi-step reaction routes of up to 5 steps, attempting the synthesis of 1876 diverse expansions, designs entirely driven by synthetic tractability. The expected product was present in 1108 (59%) crude reaction mixtures, detected by liquid chromatography mass spectrometry (LCMS). 22 individual products were resolved in the crystal structures of crude reaction mixtures added to crystals, providing an initial structure activity relationship map. 19 of these showed binding pose stability, while, through binding instability in the remaining 3 products, we could resolve a stereochemical preference for mixtures containing racemic compounds. One compound showed biochemical potency (IC50=34 μM) and affinity (Kd=50 μM) after resynthesis. This approach therefore lends itself to routine fragment progression, if coupled with algorithmically guided compound and reaction design and new formalisms for data analysis.

Original publication

DOI

10.1002/anie.202424373

Type

Journal article

Journal

Angew Chem Int Ed Engl

Publication Date

11/02/2025

Keywords

Fragment-based drug discovery, array synthesis, automated synthesis, bromodomain inhibitor, high-throughput x-ray crystallography