Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Plant nitrogen (N)-use efficiency (NUE) is largely determined by the ability of root to take up external N sources, whose availability and distribution in turn trigger the modification of root system architecture (RSA) for N foraging. Therefore, improving N-responsive reshaping of RSA for optimal N absorption is a major target for developing crops with high NUE. In this study, we identified RNR10 (REGULATOR OF N-RESPONSIVE RSA ON CHROMOSOME 10) as the causal gene that underlies the significantly different root developmental plasticity in response to changes in N level exhibited by the indica (Xian) and japonica (Geng) subspecies of rice. RNR10 encodes an F-box protein that interacts with a negative regulator of auxin biosynthesis, DNR1 (DULL NITROGEN RESPONSE1). Interestingly, RNR10 monoubiquitinates DNR1 and inhibits its degradation, thus antagonizing auxin accumulation, which results in reduced root responsivity to N and nitrate (NO3-) uptake. Therefore, modulating the RNR10-DNR1-auxin module provides a novel strategy for coordinating a desirable RSA and enhanced N acquisition for future sustainable agriculture.

Original publication

DOI

10.1038/s41477-023-01533-7

Type

Journal article

Journal

Nat Plants

Publication Date

11/2023

Volume

9

Pages

1902 - 1914

Keywords

Oryza, Nitrogen, Nitrates, Crops, Agricultural, Indoleacetic Acids