Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We used an untargeted mass spectrometric approach, tandem mass tag proteomics, for the identification of proteomic signatures in genetic frontotemporal dementia (FTD). A total of 238 cerebrospinal fluid (CSF) samples from the Genetic FTD Initiative were analyzed, including samples from 107 presymptomatic (44 C9orf72, 38 GRN, and 25 MAPT) and 55 symptomatic (27 C9orf72, 17 GRN, and 11 MAPT) mutation carriers as well as 76 mutation-negative controls ("noncarriers"). We found shared and distinct proteomic alterations in each genetic form of FTD. Among the proteins significantly altered in symptomatic mutation carriers compared with noncarriers, we found that a set of proteins including neuronal pentraxin 2 and fatty acid binding protein 3 changed across all three genetic forms of FTD and patients with Alzheimer's disease from previously published datasets. We observed differential changes in lysosomal proteins among symptomatic mutation carriers with marked abundance decreases in MAPT carriers but not other carriers. Further, we identified mutation-associated proteomic changes already evident in presymptomatic mutation carriers. Weighted gene coexpression network analysis combined with gene ontology annotation revealed clusters of proteins enriched in neurodegeneration and glial responses as well as synapse- or lysosome-related proteins indicating that these are the central biological processes affected in genetic FTD. These clusters correlated with measures of disease severity and were associated with cognitive decline. This study revealed distinct proteomic changes in the CSF of patients with genetic FTD, providing insights into the pathological processes involved in the disease. In addition, we identified proteins that warrant further exploration as diagnostic and prognostic biomarker candidates.

Original publication

DOI

10.1126/scitranslmed.adm9654

Type

Journal article

Journal

Sci Transl Med

Publication Date

05/02/2025

Volume

17

Keywords

Humans, Frontotemporal Dementia, Proteomics, Mutation, tau Proteins, Female, Male, C9orf72 Protein, Middle Aged, Progranulins, Gene Regulatory Networks